Fractionation of oxygen isotopes in phosphate duringits interactions with iron oxides

نویسندگان

  • Deb P. Jaisi
  • Ruth E. Blake
  • Ravi K. Kukkadapu
چکیده

Iron (III) oxides are ubiquitous in near-surface soils and sediments and interact strongly with dissolved phosphates via sorption, co-precipitation, mineral transformation and redox-cycling reactions. Iron oxide phases are thus, an important reservoir for dissolved phosphate, and phosphate bound to iron oxides may reflect dissolved phosphate sources as well as carry a history of the biogeochemical cycling of phosphorus (P). It has recently been demonstrated that dissolved inorganic phosphate (DIP) in rivers, lakes, estuaries and the open ocean can be used to distinguish different P sources and biological reaction pathways in the ratio of O/O (dOP) in PO4 3 . Here we present results of experimental studies aimed at determining whether non-biological interactions between dissolved inorganic phosphate and solid iron oxides involve fractionation of oxygen isotopes in PO4. Determination of such fractionations is critical to any interpretation of d OP values of modern (e.g., hydrothermal iron oxide deposits, marine sediments, soils, groundwater systems) to ancient and extraterrestrial samples (e.g., BIF’s, Martian soils). Batch sorption experiments were performed using varied concentrations of synthetic ferrihydrite and isotopically-labeled dissolved ortho-phosphate at temperatures ranging from 4 to 95 C. Mineral transformations and morphological changes were determined by X-Ray, Mössbauer spectroscopy and SEM image analyses. Our results show that isotopic fractionation between sorbed and aqueous phosphate occurs during the early phase of sorption with isotopically-light phosphate (PO4) preferentially incorporated into sorbed/solid phases. This fractionation showed negligible temperature-dependence and gradually decreased as a result of O-isotope exchange between sorbed and aqueousphase phosphate, to become insignificant at greater than 100 h of reaction. In high-temperature experiments, this exchange was very rapid resulting in negligible fractionation between sorbed and aqueous-phase phosphate at much shorter reaction times. Mineral transformation resulted in initial preferential desorption/loss of light phosphate (PO4) to solution. However, the continual exchange between sorbed and aqueous PO4, concomitant with this mineralogical transformation resulted again in negligible fractionation between aqueous and sorbed PO4 at long reaction times (>2000 h). This finding is consistent with results obtained from natural marine samples. Therefore, O values of dissolved phosphate (DIP) in sea water may be preserved during its sorption to iron-oxide minerals such as hydrothermal plume particles, making marine iron oxides a potential new proxy for dissolved phosphate in the oceans. 2009 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Iron oxides stimulate sulfate-driven anaerobic methane oxidation in seeps.

Seep sediments are dominated by intensive microbial sulfate reduction coupled to the anaerobic oxidation of methane (AOM). Through geochemical measurements of incubation experiments with methane seep sediments collected from Hydrate Ridge, we provide insight into the role of iron oxides in sulfate-driven AOM. Seep sediments incubated with (13)C-labeled methane showed co-occurring sulfate reduct...

متن کامل

Application of cross-flow ultrafiltration for the determination of colloidal abundances in suboxic ferrous-rich ground waters.

A suboxic groundwater from a sandy coastal aquifer was sampled using a new air free, large volume sampling method. Subsequent processing for size fractionation was completed with a modified cross-flow ultrafiltration (CFF) system equipped with a 1 kDa CFF membrane. By purging the CFF system with nitrogen, no oxygen was able to reach the sample. With this optimization, the sample was processed w...

متن کامل

Triple oxygen isotope variations in sedimentary rocks

Relatively large (P0.2&) O anomalies in the geologic record have been used to recognize atmospheric processes such as photochemical reactions and to trace changes in the partial pressures of O2 and CO2 in Earth’s atmosphere through time. However, recent oxygen isotope measurements of terrestrial rocks, minerals and waters also reveal common, smaller (but statistically significant) deviations fr...

متن کامل

Non-mass Dependent Oxygen Isotopic Fractionation of Refractory Oxide Dust Produced by a Chemical Process

Introduction: A wide range of oxygen isotopic compositions have been observed in early solar system objects reflecting the existence of heterogeneity in the solar nebula from sub-millimeter to the scale of planetary dimensions. Along with the spread in composition, the striking feature is the departure from the normal fractionation line (represented by a slope 1⁄2 line in a 3-isotope plot of ox...

متن کامل

PNAS Plus Significance Statements Iron oxides stimulate sulfate-driven anaerobic methane oxidation in seeps

Anaerobic oxidation of methane (AOM) coupled to sulfate reduction has been shown to consume up to 90% of the greenhouse gas methane produced within the subseafloor environment; however, the mechanism of this process has remained enigmatic. Here, we provide geochemical evidence based on sulfur, oxygen, and carbon isotopes for the involvement of iron oxides in sulfate-driven AOM inmethane seeps. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017